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Abstract. In recent experiments performed at the Paul Scherrer Institute (PSI) measurements were made
of the yield Y2γ of the two-photon 2s → 1s transition of the fully-ionized muonic boron formed and
quenched in a gaseous mixture of diborane B2H6 and helium. In the present work this yield is calculated
for an idealized case of a very low diborane density when the main 2s state decay modes competing with the
two-photon transition are due to the electron transfer from helium to the µ-ion. As the rate of this transfer
depends strongly on the relative velocity, a treatment is needed of the whole kinetics of processes occurring
with the µ-ion in helium. Accordingly, within the optical model with a complex potential constructed
before we calculate cross-sections of the elastic scattering and electron transfer. Then the time evolution
of the µ-ion energy is considered and, finally, the yield Y2γ is calculated. It proves that at helium pressures
PHe ≥ 50 Torr this yield may be written in the form: (Y2γ)−1 = C(1+PHeD), where the factor C is greater
than unity and increases rapidly with the initial energy E0 which the µ-ion has after its formation in the
diborane molecule. Thus measurement of the pressure dependence of Y2γ allows E0 to be estimated. The
results obtained make it possible to suggest a similar parametrization of the PSI data.

PACS. 34.50.Bw Energy loss and stopping power – 34.70.+e Charge transfer – 36.10.Dr Positronium,
muonium, muonic atoms and molecules

1 Introduction

The discovery of weak neutral currents in 1973 stimulated
a search for ways of their detection in various physical
systems. One of the original proposals concerned effects
caused by the weak neutral current interaction of the neg-
ative muon and a nucleus in light muonic atoms. The idea
consisted of the following [1–3]. Let a µ-atom be in its
2s state. Its energy is close to that of the 2p state of op-
posite parity. The parity-violating part of the weak in-
teraction leads to the 2s state acquiring an admixture
of the 2p state. As a result, the amplitude of the one-
photon 2s → 1s transition of the muon becomes a sum
of magnetic and electric dipole amplitudes. Their interfer-
ence leads to the appearance of a number of observable
P -odd correlations. For instance, if the muon spin in the
2s state is polarized, the angular photon distribution be-
comes asymmetrical. It includes a term proportional to
the first Legendre polynomial. If the muon spin is unpo-
larized, a nonvanishing circular polarization of the photon
arises. Moreover, the muon spin polarization in the final
1s state proves to be nonzero and leads to a correlation of
the momenta directions of the photon and the hard elec-
tron from the subsequent µ-decay at the 1s orbit [4,5]. In
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principle, measurements of these correlations make it pos-
sible to determine constants of the weak neutral current
interaction [4–8].

The P -odd correlations can be rather large. They
amount to several per cent in µ-atoms of the region
2 ≤ Z ≤ 5 (Z is the atomic number). Nevertheless, exper-
iments on their observation have not yet been performed.
The reason is that the one-photon 2s → 1s transition is
strongly forbidden in light µ-atoms and is very difficult for
detection. Even in the most favourable, idealized situation
of a fully-ionized µ-atom isolated from an external influ-
ence the relative yield of this transition per one muon in
the 2s state is very small–about 10−6 for muonic helium
and 10−4 for muonic boron [1–5,9]. The actual situation
is much worse. This is connected with the µ-atoms with
Z ≥ 2 being able to hold several bound electrons. Some of
them may remain after the atomic muon cascade to the 2s
state, others may be intercepted from surrounding atoms
or molecules during the 2s state lifetime. The presence of
bound electrons opens additional, very intensive channels
of the 2s state decay [10–13]. As a result, the yield of the
one-photon transition falls additionally by several orders
of magnitude. Moreover, in some of these channels there
is an intense radiation whose energy is close to that of
the 2s → 1s transition. The background resulting from
this radiation is a serious obstacle to a detection of the
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one-photon transition. There are also other reasons for
the appearance of such a background. In muonic hydrogen
which can not hold electrons it is due to the well-known
process of the radiative quenching of the 2s state in colli-
sions with hydrogen molecules [14–16]. This process is also
significant for muonic helium but becomes less important
for heavier µ-atoms [4].

The previous consideration shows that the one-photon
2s→ 1s transition may be observed provided the µ-atom
is formed in a rarefied gas. In this case one may hope to
suppress both the electron transfer from gas molecules to
the µ-atom and the radiative collisional quenching of the
2s state. However, a serious problem arising here is to pro-
vide a sufficient muon stop density. A way of solving this
was found at the Paul Scherrer Institute (Switzerland)
where the cyclotron trap was put into operation [17]. This
made it possible to begin preliminary experiments search-
ing for the conditions necessary for observing the P -odd
correlations in muonic boron. The reasons why just this
µ-atom was chosen are presented in [5]. The first step [18]
was to a obtain the fully-ionized muonic boron in the 2s
state and to prevent the electron transfer during its life-
time. In this case the 2s state is metastable. Its lifetime
is about 32 ns [9] and its main decay mode is the two-
photon 2s → 1s transition. Thus, the presence of two-
photon events in an experiment may be an indicator of
the 2s state metastability. The experiment [18] was de-
voted to a search of such events in a mixture of a small
amount of diborane gas (B2H6) with helium. The mixture
was at room temperature, its pressure was varied from
20 to 165 Torr, the diborane concentration – from 0.3
to 5%. The important point was the use of helium as a
moderator of muons injected into the trap. This made it
possible to reduce the partial diborane pressure to a few
decitorr and, as a result, to suppress the electron trans-
fer to a maximum degree because it is natural to expect
that the electron transfer in collisions of muonic boron
with helium is considerably less effective than in collisions
with diborane. The experiment proved to be successful.
Two-photon events were actually observed at some com-
binations of the helium pressure and diborane percentage.
Besides being important for planning an experiment on
measuring the P -odd correlations this result may be of
interest for physics of atomic processes. Just this aspect
is discussed in the present paper.

In [18] the relative yield of the two-photon transition
per one muon in the 2s state was extracted from experi-
mental data and parametrized as follows:

Y2γ = λ2γ/ (λ2γ + ρHeqHe + ρB2H6qB2H6) . (1)

λ2γ = 3.09× 107 s−1 is the two-photon transition rate in
the isolated muonic boron [9], ρHe and ρB2H6 are the he-
lium and diborane densities (in cm−3), qHe and qB2H6 are
some effective rate constants of the electron transfer from
helium and diborane. The denominator of (1) is treated as
the total decay rate of the 2s state in the gaseous mixture.
The following values of the rate constants were found:

qHe = (0.10± 0.18)× 10−10 cm3 s−1, (2)

qB2H6 = (0.55± 0.22)× 10−8 cm3 s−1. (3)

Only the upper limit on qHe was actually placed. It is less
than qB2H6 by, at least, two orders of magnitude. This re-
sult confirms the correctness of the above-mentioned idea
to reduce the partial diborane pressure by introducing he-
lium as a moderator. Nevertheless, in spite of rather small
values of this pressure achieved in the experiment the elec-
tron transfer to muonic boron was mainly due to collisions
with diborane molecules.

Let us take the following physical picture of the muonic
boron formation and its subsequent behaviour in the
gaseous mixture. Muons injected into the trap are slowed
down by collisions with helium atoms. After their energy
has reached suitable values, they start to be captured by
diborane molecules. The next stage is the cascade of Auger
and radiative transitions of the muon occurring in the
molecule and leading, in particular, to the formation of
the fully-ionized µ-atom in the 2s state. For the subse-
quent consideration, it will be important to know typical
kinetic energies acquired by the µ-atom during its for-
mation. As the atomic capture and cascade occur in the
complex molecule, estimations of these energies are very
uncertain. For instance, the simplest assumption is that
the µ-atom acceleration is due to the energy transfer in
the atomic capture as well as the recoil in cascade transi-
tions. In this case the resulting kinetic energy of muonic
boron proves to be about 1 eV or less (the muon energy
before the atomic capture is taken to be less than 100 eV).
However, that the µ-atom is formed in the molecule may
lead to its additional acceleration. Indeed, the molecule
is destroyed during the Auger cascade. As a result, posi-
tively charged molecular fragments may appear together
with the ionized µ-atom. Because of their mutual repul-
sion they start to fly apart. During this process the µ-
atom may acquire an additional gain in energy, the scale
of which is determined by a typical energy of the repul-
sion. Its crude estimation is obtained within the assump-
tions that the molecular fragments are singly or doubly
charged, and effective distances between them are equal
to several Angström. In this case the µ-atom energy proves
to be of the order of one atomic unit (1 a.u. = 27.2 eV).

After the fully-ionized µ-atom in the 2s state has been
formed, it starts to migrate in the gas by colliding with
helium atoms and diborane molecules. Collisions destroy
the 2s state metastability and reduce the yield of the two-
photon transition. For instance, the µ-atom can intercept
an electron in a collision. This causes a fast quenching of
the 2s state by decay modes connected with an excitation
of the bound electron or its ejection in the continuum [10,
11]. It is clear that the results (1-3) carry information on
collisions in which the µ-atom takes part, as well as on
the stage of its formation in the diborane molecule. This
stage determines the initial kinetic energy with which the
µ-atom starts to migrate in the gas and which is man-
ifested due to the energy dependence of collision rates.
An attempt to extract such information was made in [19]
where the electron transfer from helium to the µ-atom
was considered. As the radius of (µB)4+ is much less than
radii of electron orbits, the µ-atom was treated as a heavy
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beryllium isotope Be4+ (a point, quadruply charged nu-
cleus with the µ-atom mass). It was found that the main
reaction responsible for the electron transfer was:

Be4+ + He→ Be3+(1s) + He2+ + e−. (4)

The final state involves the one-electron ion Be3+(1s) in
its ground state, the helium nucleus He2+ and one un-
bound electron. This reaction results from the Auger ef-
fect in the two-electron quasi-molecule (Be−He)4+. Its
total cross-section σA was calculated within the follow-
ing approximations. The nuclei Be4+ and He2+ interact
by forces whose potential is determined by the electronic
quasi-molecule state correlated to the entrance channel
Be4+ + He in the separated atoms limit. At any finite in-
ternuclear distance this state is autoionized and can decay
due to the Auger transition to the ground electronic state
of the one-electron quasi-molecule (Be−He)5+. This sys-
tem is unbonded and decays into Be3+(1s) and He2+. The
interaction potential was calculated by diagonalizing the
electronic Hamiltonian of (Be−He)4+ on a basis of several
diabatic states constructed from two-centre orbitals. The
electronic wavefunction built in this way was used to cal-
culate the Auger transition rate. The Auger electron was
described by a plane wave. The relative motion of the nu-
clei was considered to be in classical paths. The collision
energy T was varied from 10−3 to several atomic units. Its
lower limit corresponds to the thermal energy (1/40 eV).
At 10−3 a.u. ≤ T ≤ 10−2 a.u. the cross-section σA was
found to be small (∼ 10−2 Å2) and to decrease inversely
with the relative velocity v. At higher collision energies it
increases fast, amounting to typical atomic values of 1 Å2

at T = 1−2 a.u., and then remains nearly at this level.
The comparison of values of the product (vσA) with the
experimental result (2) made it possible to place an up-
per limit on the energy of collisions in which the µ-atom
takes part during the 2s state lifetime (32 ns). It proved to
be about 0.3 a.u. The corresponding µ-atom energy in the
laboratory frame is greater by a factor of 3.5, and is about
1 a.u. This limit agrees with the assumption that the en-
ergy of the µ-atom after its formation in the diborane
molecule is about 1 eV and results from the energy trans-
fer in the atomic muon capture and the recoil in cascade
transitions. However, it does not exclude the possibility
of the additional acceleration of the µ-atom caused by its
Coulomb repulsion from positively charged molecular frag-
ments. Unfortunately, the large errors in (2) do not allow
the latter mechanism to be indicated with certainly. The
result (3) is more definite, but unlikely to yield something
because a realistic calculation of the electron transfer from
diborane to the µ-atom seems to be impossible at present.
It should be emphasized that the above-mentioned estima-
tion of the µ-atom energy is very crude because it is based
on the relation qHe ≡ vσA. Actually this is not correct. A
calculation of qHe is a complicated problem involving the
solution of a time-dependent kinetic equation for a distri-
bution function of µ-atoms migrating in the gas.

In connection with the presented results it is of interest
to find out what, in principle, can be obtained from mea-
surements of the two-photon transition yield. Accordingly,

in this paper we consider this question for an idealized case
in which the fully-ionized muonic boron in its 2s state is
formed in the mixture of He and B2H6, but the pressure
of diborane is so small that its contribution to the elec-
tron transfer is negligible. This means the validity of the
following inequality in (1):

ρB2H6qB2H6 � ρHeqHe. (5)

A detection of the two-photon transition under such con-
ditions seems to be impossible now because of a too low
density of µ-atoms. However, this is the clearest case for a
theoretical consideration and it is natural to begin with it.
In Section 2 we calculate the differential cross-section of
the elastic scattering of (µB)4+ by helium as well as sup-
plement the calculation of σA made in [19]. In Section 3
these cross-sections are used to write a kinetic equation for
a distribution function of migrating µ-atoms. Its approxi-
mate solution is found and used to obtain the two-photon
transition yield as a function of the helium pressure. Con-
clusions are cited in the same section. If it is not indicated
specifically, atomic units are used everywhere.

2 The elastic and inelastic scattering
of (µB)4+ by helium

In the present consideration (µB)4+ is also treated as a
heavy beryllium isotope Be4+. In accordance with [19]
at the relevant collision energies the two-electron quasi-
molecule (Be−He)4+ may be considered to be in its au-
toionized electronic state correlated to the entrance chan-
nel Be4+ + He in the separated atoms limit. The Auger
decay of this state during the collision results in the re-
action (4). Such a situation may be phenomenologically
described by the Schrodinger equation with a complex po-
tential [20]. In our case this potential is:

V (r) = U(r) − iW (r)/2. (6)

r is the internuclear distance, U(r) is the potential of
forces by which the nuclei Be4+ and He2+ interact in the
quasi-molecule, W (r) is the Auger decay rate. V (r) rep-
resents the electronic energy of the quasi-molecule in the
adiabatic approximation (with addition of the Coulomb
nuclear repulsion). Its second term leads to the usual de-
cay factor exp(−W (r)t) in the electronic density. We use
U(r) and W (r) calculated in [19], but U(r) is defined more
accurately near its zero at r ≈ 4.5 because this part of
U(r) is significant in calculating the cross-section of (4) at
thermal energies. The plots of U(r) and W (r) are shown
in Figure 1. At small distances U(r) is determined by the
repulsion of Be4+ and He2+:

U(r → 0) = 8/r. (7)

At intermediate r there is a potential well, and at large
distances U(r) is due to the long-range attraction of Be4+

and He:

U(r→∞) = −8β/r4. (8)
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Fig. 1. The potentials U and Ueff (left ordinates) as well as
the Auger decay rate W (right ordinates) versus the internu-
clear distance r. At r ≤ 4, U(r) is shown multiplied by 10−2.

β = 1.383 is the dipolar polarizability of helium [21].
An important consequence of this attraction is a hump
of curves of the effective potential (Fig. 1):

Ueff (r) = U(r) +
l(l + 1)

2m r2
· (9)

l is the orbital angular momentum of the nuclei about their
center of mass, m is the reduced mass. Because of the re-
pulsive branch of U(r) the hump exists only at l ≤ 72. If
the collision energy T becomes less than the hump height,
the nuclei can not reach the potential well in classical
paths. This leads, in particular, to a considerable suppres-
sion of the Auger effect because its rate W (r) is seen from
Figure 1 to decrease exponentially at large r.

The subsequent procedure is standard [20]. It is re-
duced to a calculation of complex phase shifts:

ηl = δl + iµl. (10)

The set of ηl specifies the relevant cross-sections com-
pletely. The elastic differential cross-section is:

dσel/dΩ = |f(ϑ)|2, (11)

dΩ = 2π sinϑ dϑ, ϑ is the scattering angle in the center-
of-mass frame, f(ϑ) is the scattering amplitude:

f(ϑ) = (1/2ik)
∞∑
l=0

(2l + 1)[exp(2iηl)− 1]Pl(cosϑ), (12)

k = (2mT )1/2, (13)

Pl(cosϑ) is the Legendre polynomial. The total elastic
cross-section is:

σel = (2π/k2)
∞∑
l=0

(2l+ 1)(ch2µl − cos 2δl) exp(−2µl).

(14)

The total cross-section of the reaction (4) is:

σA = (π/k2)
∞∑
l=0

(2l+ 1)Ql, (15)

Ql = 1− exp(−4µl). (16)

Ql may be treated as the Auger effect probability in the
collision with the given T and l. In [19] it was calculated
by considering the relative motion of the nuclei to be in
classical paths.

The phase shifts are calculated by a numerical inte-
gration of the Schrodinger equation for the complex radial
function [20]. The Numerov method is used [22]. The inte-
gration is undertaken out outwards from the origin untill
the internuclear distance r finds itself in the asymptotic
region where U(r) may be well approximated by (8) and
W (r) is negligible. It is known that for long-lange poten-
tials similar to (8) special care should be taken to stop the
numerical integration as soon as possible and, thereby, to
reduce computation time and to prevent an accumulation
of errors. Accordingly, on the basis of ideas formulated
in [22], we construct two linearly independent solutions of
the radial equation in the asymptotic region. The radial
function is their linear combination with coefficients which
are found by its join with the function obtained by the nu-
merical integration at smaller r. µl and δl are expressed in
terms of these coefficients: µl-unambigously, while δl-with
an accuracy to an integer multiple of π. We write it as
follows:

δl = νl +Nπ. (17)

νl is defined so that |νl| ≤ π/2, and the integer N is:

N = lim
R→∞

[n(R)− nB(R)]. (18)

n(R) and nB(R) are the numbers of zeroes of, respectively,
the real part of the complex radial function and the Bessel
function Jl+1/2(kr) within the interval 0 ≤ r ≤ R. If
R→∞, both n(R) and nB(R) become infinite, but their
difference remains finite. It indicates just how strongly
the potential distorts the wave function. The form (17) is
very natural in the limit W (r) ≡ 0 (potential nonreactive
scattering). Our case is rather close to this limit because
the Auger effect probabilities Ql are small at the relevant
energies [19].

To illustrate the results obtained we present some plots
of δl vs. l made for different collision energies (Figs. 2
and 3). Classical deflection functions θl calculated for
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Fig. 2. The real part δl of the complex phase shift (left ordi-
nates) and the classical deflection function θl (right ordinates)
versus the angular momentum l for the spiral scattering. The
dotted lines indicate discontinuities of δl curves. The vertical
arrows indicate positions of the orbiting singularity of θl.

the potential U(r) with the standard formulae [20] are
also shown. Curves of δl demonstrate a number of features
peculiar to the potential ion-atom scattering under quasi-
classical conditions [20,23]. At first δl increases with l,
mounts to its maximum and starts to decrease. At low
energies this decrease involves a few discontinuous jumps
(Fig. 2), the reason for which is that starting from some
l the collision energy becomes less than the height of a
hump in the effective potential. In this case the classical
deflection function has a logarithmic singularity which is
known to be connected with the orbiting phenomenon.
After the region of jumps a curve of δl becomes nearer and
nearer to that obtained within the Born approximation
for the polarization potential (8). At large l it follows the
formula [20]:

δl = 2πβmk2/l3 (19)

As the collision energy is increased, it becomes greater
than the height of any potential hump, and the jumps
of δl disappear (Fig. 3). The singularity of the deflection
function is replaced by a finite minimum. Because of a
growing effect of the repulsive branch of U(r) this mini-
mum becomes shallower and broader. For the same reason
curves of δl are transformed so that the region of negative
δl becomes more and more appreciable. One should note
that in a rather wide interval of collision energies and

Fig. 3. The real part δl of the complex phase shift and the
classical deflection function θl versus the angular momentum l
for the rainbow scattering.

angular momenta our values of δl agree well with those
calculated within the WKB approximation [20]. In this
case the classical equivalence relation θl = 2∂δl/∂l is sat-
isfied with a good accuracy. However, the WKB method
becomes inapplicable as the collision energy approaches
the top of a potential hump. The numerical integration
of the Schrodinger equation is needed in this case. Con-
cerning l-dependences of the Auger effect probability Ql
(Fig. 4), they are similar to those obtained in [19]. A cer-
tain increase of Ql at low collision energies is due to the
already-mentioned, more accurate definition of U(r) near
its zero. Ql is seen to fall abruptly starting from some l.
This results from the Auger decay rate W (r) decreasing
exponentially at large r where paths with high l lie. Ac-
tually this fall of Ql places a finite upper limit in the sum
(15). It should be noted that the classical consideration of
the relative motion used in [19] predicts an increase of Ql
as the collision energy approaches the top of a potential
hump. As the classical mechanics is obviously inapplica-
ble in this case, such an increase is nonphysical and it
was ignored in [19]. The correctness of this judgement is
confirmed by the present quantum-mechanical treatment
which shows no increase of Ql near the hump top. Instead,
it indicates a possibility of a considerable increase of Ql at
energies less than the hump height. This is connected with



222 The European Physical Journal D

Fig. 4. The partial probabilities of the Auger effect Ql versus
the angular momentum l.

the existence of quasisteady states in the effective poten-
tial. Within a narrow energy interval the wave function
of such a state penetrates effectively into the classically
allowed region of the internal potential well. As the Auger
decay rate W (r) increases fast as r is decreased, this leads
to the appearance of a sharp peak in the energy depen-
dence of Ql and σA. One should note that as quasi-steady
states may lie deep under a potential hump, a more care-
ful procedure of integrating the radial equation is used in
this case. It is based on the treatment presented in [24]
and consists of a construction of two linearly independent
solutions z± of the radial equation in the classically forbid-
den region under the hump. z+ is an increasing function
of r, z−-decreasing. These solutions are calclulated by the
numerical integration in directions of their growth. The
radial function in the relevant region is a linear combina-
tion of z± with coefficients A± which are found by its join
with the function obtained at less r. Thus, the radial func-
tion becomes known under the hump. Then the numerical
integration continues to the asymptotic region where the
phase shift is determined. Peaks in Ql appear near ener-
gies at which the coefficient A+ vanishes. By localizing a
zero of A+ and studying its vicinity with a smaller and
smaller energy step it is possible to establish the shape of
the corresponding peak.

After the phase shifts have been found, the relevant
cross-sections are calculated by the direct summation of
partial waves in (12−15). As δl follows the power law
(19) at large l, a rather large number of waves has to

Fig. 5. The elastic differential cross-section versus the center-
of-mass scattering angle for the spiral scattering at T = 10−3.

be taken into account. Especially slow is the convergence
of the series of Ref(ϑ). Even outside a small-angle re-
gion a few thousands of terms have to be taken to provide
an accuracy of 10−3. Some plots of the elastic differen-
tial cross-section vs. the center-of-mass scattering angle
ϑ are shown in Figures 5-7. Presented also, are classical
differential cross-sections calculated with the help of the
deflection functions plotted in Figures 2 and 3. Again a
number of peculiar features is observed. At small ϑ the
quantum cross-section has a peak of a finite height which
becomes sharper and sharper as the collision energy is
increased. It is due to the scattering by the long-range
potential tail (8). The classical cross-section is, of course,
infinite at ϑ = 0. Outside a small-angle region the quan-
tum cross-section shows slow oscillations on which rapid
ones are superimposed. Such a behaviour is known to be
typical for potentials with an inner repulsion and an outer
attraction [23]. Such a potential allows a few paths having
different impact parameters but scattered at one and the
same angle. In the simplest case to which Figures 6 and 7
relate, the collision energy is so large that the orbiting phe-
nomenon is impossible and the classical deflection function
has the minimum of a depth ϑl < π (Fig. 3). Accordingly,
there are three paths scattered at an angle ϑ < ϑr. Two of
them specified by the condition θl = −ϑ lie mostly in the
outer attraction region. The interference of their contri-
butions to the scattering amplitude gives rise to the slow
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Fig. 6. The elastic differential cross-section versus the center-
of-mass scattering angle for the rainbow scattering at T =
10−2. The horizontal arrow indicates the quantum cross-section
at ϑ = 0◦.

oscillations. The third path for which θl = ϑ penetrates
into the repulsion region. The addition of its contribution
causes the rapid oscillations. In the vicinity of ϑr the be-
haviour peculiar to the rainbow scattering is observed. As
ϑ migrates to the region ϑ > ϑr, the slow oscillations dis-
appear at first, then the rapid ones die gradually, and the
quantum cross-section becomes nearer and nearer to the
classical one. At such angles the latter is contributed only
by one path, while at ϑ < ϑr the three paths contribute
and the classical cross-section has a singularity at ϑ→ ϑr
from the left. As the collision energy T is increased, the
rainbow scattering angle ϑr decreases nearly as T−1. As a
result, appreciable differences between the quantum and
classical cross-sections migrate to the small-angle region.
It is interesting to note that the two kinds of oscillations
of the quantum cross-section exist also at lower energies
when the orbiting phenomenon occurs (Fig. 5). In this case
an infinite number of paths are scattered at any angle ϑ.
It is convenient to distinguish two families of such paths
according to values of the deflection function:

θl = ±ϑ− 2πn±, (20)

n± are non-negative integers indicating how many com-
plete revolutions about the scattering center a path makes.
Two attractive paths encircling the center at different dis-
tances correspond to each n±, except n+ = 0 for which
a single repulsive path exists. Both the initial and final

Fig. 7. The elastic differential cross-section versus the center-
of-mass scattering angle for the rainbow scattering at T =
10−1. In the insert is shown the classical cross-section at 30◦ ≤
ϑ ≤ 180◦. The quantum cross-section is very close to this curve.

asymptotic branches of the paths of the plus-family lie
on one side of the center. For the paths of the minus-
family they are on different sides. The classical differential
cross-section is a sum of an infinite series which, however,
converges rather fast (like a geometric progression). At
ϑ ≤ 90◦ the main contribution comes from three paths
with minimum values of θl(n± = 0). It appears the in-
terference of scattering amplitudes corresponding to these
paths gives rise to the oscillations of the quantum cross-
section, similar to the case of higher energies. As ϑ is in-
creased, attractive paths with n+ = 1 become more and
more significant, but the situation is not changed quali-
tatively and the oscillations remain. However, because of
attractive paths the classical cross-section becomes infi-
nite at ϑ→ 180◦ unlike the cases shown in Figures 6 and
7. The quantum cross-section remains, of course, finite in
this limit.

Shown in Figure 8 are plots of the total elastic σel
and reaction σA cross-sections vs. the collision energy T .
Moreover, presented are the diffusion cross-section σd and
the mean energy loss 〈ε〉 of (µB)4+ in an individual elastic
collision. σd is defined by

σd =

∫
(1− cosϑ)(dσel/dΩ)dΩ. (21)
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Fig. 8. The total elastic σel, diffusion σd and reaction σA
cross- sections (left ordinates) as well as the mean energy loss
〈ε〉 divided by the µ-atom energy E (right ordinates) versus the
collision energy T . The solid curves are results of the “exact”
calculation, the dash-dot ones are obtained with the simplified
formulae (26-27).

The integration is carried out analytically with the help
of (12) and properties of Legendre polynomials. The re-
sulting expression is an infinite series in terms of δl and
µl. 〈ε〉 is connected with σd and σel. Let E and (E−ε) be
the energies of (µB)4+ before and after an elastic collision.
They are specified in the laboratory frame where helium
atoms are treated as if at rest. The relation of E to the
collision energy T is:

E =
(mµB

m

)
T ≈ 3.5T. (22)

mµB is the mass of (µB)4+. The energy loss ε is expressed
in terms of the center-of-mass scattering angle ϑ by

ε = (2m/M)E(1− cosϑ). (23)

M is the total mass of (µB)4+ and He2+. The mean energy
loss is:

〈ε〉 = σel
−1

∫
ε(dσel/dΩ)dΩ. (24)

It is clear that

〈ε〉 = (2m/M)E(σd/σel). (25)

In Figure 8 shown also are energy dependences of σel, σd
and 〈ε〉 obtained within some simplifying assumptions. In
the series (14) all µl are taken to be equal to zero, cos 2δl
is treated to be a random function at l less than some l0
and the Born approximation (19) is used at l ≥ l0. l0 is
determined from the condition θl0 = 1. The corresponding
result is [20]:

σel = 4π[2(πβ)2m/T ]1/3. (26)

A similar method applied to σd yields [25]:

σd = 2.12π(8β/T )1/2. (27)

The approximation for 〈ε〉 follows from (25-27). In a log-
log scale these dependences are linear. It is known [26,27]
that the presence of maxima in δl (Figs. 2,3) contradicts
the assumption of a random nature of cos 2δl and leads
to undulations of the σel and σd curves. It is seen from
Figure 8 that the “exact” σel curve is near the straight
line specified by (26) and an amplitude of its undulations
is small. These mean that the δl maxima do not play
any significant role in σel. This is quite clear because a
considerable contribution to σel comes from high l waves
scattered by the long-range attractive potential tail (8).
For the same reason dσel/dΩ is sharply peaked forward
and σel is very large-right up to 2 × 103 Å2 at low ener-
gies. More appreciable are manifestations of the δl max-
ima in σd and 〈ε〉. This is due to the contribution of high
l waves (or, equivalently, that of small scattering angles)
being suppressed in the corresponding formulae. Such a
suppression results also in the inequalities σd � σel and
〈ε〉 � E. Thus, small-angle elastic scattering with small
energy losses predominates. It is interesting to note that
the energy loss distribution has an appreciable dispersion.
It is specified by the mean square of the energy loss 〈ε〉2

whose definition differs from (24) by the power of ε in the
integrand. Finally 〈ε2〉 is also expressed in terms of δl and
µl. The calculation indicates that at all the relevant en-
ergies 〈ε2〉1/2 is greater than 〈ε〉 by a factor of 4−6, and
its energy dependence also shows appreciable undulations
caused by the δl maxima. We do not present the corre-
sponding curve because 〈ε2〉 will be unnecessary later on.

Concerning the reaction cross-section σA, its energy
dependence shown in Figure 8 is, in general outline, simi-
lar to that calculated in [19]. As before, at T ≤ 10−2 the
smooth curve is approximately described by the v−1 law.
Some increase of σA in this region compared to [19] is due
to the more accurate definition of U(r). However, as was
already mentioned, the present quantum-mechanical con-
sideration predicts sharp peaks in σA at low energies. The
most intensive of them are shown in Figure 8. Some peaks
are seen to reach a few Å2 which exceeds nonpeak values
typical for the given energy region by two orders of mag-
nitude. However, as these peaks are connected with quasi-
steady states lying deep under a potential hump, their
widths are very small-of the order of 10−4 or 10−5 of their
energies. One should note that resonance features appear
also on the other solid curves plotted in Figure 8. This
is due to some terms in the corresponding partial-wave
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expansions passing through an extremum. For σel such
features are insignificant. Their amplitudes do not exceed
a few per cent. This results from σel being contributed by
a much greater number of waves than σA. More apprecia-
ble are deviations of σd from its smooth curve which are
of 20−30%. Such an increase compared to σel is due to the
suppression of the high l waves contribution. As the be-
haviour of σel and σd at near-thermal energies where the
resonance features are localized is unnecessary for the sub-
sequent consideration, we do not examine these features
in detail and do not show them in Figure 8. One should
also make a remark concerning the mass dependence of
the relevant cross-sections. In the previous analysis the
mass of (µ10B)4+ was used. The use of those of µ11B or
the actual isotope 9Be leads to insignificant (a few per
cent) changes of σel, σd and σA. Finer features similar to
extrema in dσel/dΩ or peaks in σA are, of course, more
sensitive. However, they will also be unnecessary later on.

3 A migration kinetics of (µB)4+ in helium
and the two-photon decay of the 2s state

Let (µB)4+ in its 2s state be formed in helium with a
small admixture of diborane so that the inequality (5)
is satisfied and only collisions of [µB(2s)]4+ with helium
atoms are significant. Let us consider how these collisions
effect the two-photon 2s→ 1s transition. We take it that
this transition does occur in [µB(2s)]4+ but becomes im-
possible after the µ-atom has intercepted an electron in
the reaction (4) 1. Helium is treated as an infinite, homo-
geneous medium. This approximation seems to be reason-
able because typical paths of [µB(2s)]4+ during its lifetime
(32 ns) are small compared to the size of a muon stop vol-
ume in the experiment [18]. For instance, even without
collisions the path of the µ-atom with the energy E = 1 is
about 1 mm while the stop volume is of a few cm. For the
same reason we do not consider the space distribution of
two-photon decays which is mainly determined by that of
muon stops. In such a situation the migration of muonic
boron in helium is described by a distribution function
f(E, t) defined so that f(E, t)dE is the probability that
at a moment t the laboratory-frame energy of [µB(2s)]4+

lies between E and (E+dE). Any quantity concerning the
2s state decay can be expressed in terms of this function.
For instance, the probability of [µB(2s)]4+ having lived
till the moment t is:

P2s(t) =

∫ ∞
0

f(E, t)dE. (28)

As the formation of muonic boron takes a time much
shorter than the 2s state lifetime, it is natural to consider
that [µB(2s)]4+ arises instantly at t = 0. Accordingly,

P2s(t = 0) = 1. (29)

1 Actually, the two-photon transition yield is about 98.5%
for (µB)4+ [9] and about 3% for the µ-atom with one K-
electron [12]. In the latter case the main decay modes are the
2s → 1s transitions with emission of either one hard electron
(about 60%) or a hard photon and a soft electron.

Let also P2γ(t) and Pe(t) be respectively the probabilities
of the two-photon transition and the electron transfer (4)
within the time t. It is clear that

dP2γ/dt = λ2γP2s(t), (30)

dPe/dt = γ(t) ≡

∫ ∞
0

λA(E)f(E, t)dE, (31)

λA(E) = ρHev(E)σA(E). (32)

λ2γ and ρHe were introduced in (1), v(E) is the velocity of
the µ-atom with the energy E, σA(E) is the cross-section
of (4). As P2γ and Pe vanish at t = 0, we have:

P2γ(t) = λ2γ

∫ t

0

P2s(t
′)dt′, (33)

Pe(t) =

∫ t

0

γ(t′)dt′. (34)

The yield of the two-photon transition introduced in (1)
is

Y2γ = P2γ(t→∞). (35)

Analogously defined is the yield of the electron transfer

Ye = Pe(t→∞). (36)

P2s(t) vanishes in this limit.
The function f(E, t) obeys a kinetic equation which is

easily constructed by writing the balance of µ-atoms in a
volume dEdt. This yields:

∂f(E, t)/∂t = −λ(E)f(E, t)− ρHev(E)σel(E)f(E, t)

+ρHe

∫ ∞
0

dε
dσel(E

′; ε)

dε
v(E′)f(E′, t)

∣∣∣∣
E′=E+ε

.

(37)

The first term on the right describes quenching the 2s
state due to the two-photon transition and the electron
transfer. λ(E) is the quenching rate:

λ(E) = λ2γ + λA(E). (38)

The two other terms correspond to µ-atoms leaving and
filling the interval (E, E + dE) due to elastic collisions.
dσel(E

′ = E + ε; ε)/dε is the cross-section of the elastic
collision in which the energy of [µB(2s)]4+ is decreased
from E′ to E; ε is the energy loss. A simple relation of
this cross-section to dσel/dΩ follows from (23):

dσel(E
′; ε)/dε = (M/m)(π/E′)dσel/dΩ. (39)

With the help of (37) it is easy to check that at any t ≥ 0
the following obvious relation is valid:

P2s(t) + P2γ(t) + Pe(t) = 1. (40)
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In the limit t→∞ it yields

Y2γ + Ye = 1. (41)

To determine the function f(E, t) it is necessary to solve
the equation (36) with an initial condition

f(E, t = 0) = f0(E). (42)

f0(E) is to satisfy (29). It is clear that this procedure is
very complicated. To avoid it we simplify (37) by making
use of the so-called “continuous loss approximation” which
is often employed in problems associated with the passage
of heavy charged particles through a medium [28]. It is
based on the already-mentioned fact that typical energy
losses in individual elastic collisions are small (〈ε〉 � E).
This allows the integrand of (37) to be replaced by two
terms of its expansion in powers of (ε/E):

dσel(E
′;ε)

dε
v(E′)f(E′, t)∼=

dσel(E; ε)

dε
v(E)f(E, t)

+ ε
∂

∂E

[
dσel(E; ε)

dε
v(E)f(E, t)

]
. (43)

As a result, the integro-differential equation (37) is trans-
formed into the partial differential equation

∂f(E, t)/∂t = −λ(E)f(E, t) + ∂[ϕ(E)f(E, t)]/∂E, (44)

ϕ(E) = ρHev(E)σel(E)〈ε(E)〉. (45)

〈ε(E)〉 is the mean energy loss given by (25). It is obvious
that ϕ(E) is actually proportional to the diffusion cross-
section σd. The equation (44) can be easily solved. As the
function f0(E) involved in the initial condition (42) is now
unknown, we limit ourselves to its simplest form:

f0(E) = δ(E −E0) (46)

E0 is the initial energy of [µB(2s)]4+ which is treated as
a parameter. In this case the solution of (44) is written in
the form:

f(E, t) = δ(E −Et)P2s(t), (47)

where Et is defined by the equation

t =

∫ E0

Et

dE′/ϕ(E′), (48)

and the probability P2s(t) is:

P2s(t) = exp(−λ2γt) exp

[
−

∫ E0

Et

λA(E′)ϕ−1(E′)dE′

]
.

(49)

The form (47) allows the expression (34) to be simplified:

Pe(t) =

∫ t

0

λA(Et′)P2s(t
′)dt′. (50)

Et′ and t′ are related similarly to (48). For P2γ(t) the
formula (33) is still convenient.

Let us discuss the obtained results. The function (47)
is seen to correspond to an ensemble of monoenergetic
µ-atoms. Et is their energy at the moment t. This re-
sult indicates a limitation of the present model which can
not describe spreading the initial energy distribution (46)
caused by energy loss fluctuations in individual elastic col-
lisions [28]. For this reason the derived formulae may be
applied only at sufficiently high energies when the energy
distribution of µ-atoms has not yet been too distorted
compared to the initial one. A consideration of spreading
needs, at least, to take into account the term quadratic in
(ε/E) in the expansion (43). As a consequence, one more
term appears on the right of (44). It involves the second
derivative with respect to E as well as 〈ε2〉. The resulting
equation is unlikely to be solvable in quadratures because
of complicated energy dependences of its coefficients. Ad-
ditional complications arise at near-thermal E when the
motion of helium atoms has to be taken into account in
(37). An alternative means of consideration may be based
on a Monte-Carlo method. However, before that it is nec-
essary to construct smoothed analytical approximations of
the angular distributions dσel/dΩ. In either case a more
realistic consideration of f(E, t) needs serious additional
work which has not been carried out here.

In Figures 9 and 10 are plotted the probabilities P2γ

and Pe as well as the energy Et vs. the time t. The plots
were made with the help of the above-presented formulae
at several initial energies E0 and helium pressures PHe.
The temperature was taken to be equal to 300 K. The
cross-sections calculated in Section 2 were used in a nu-
merical evaluation of the relevant integrals. Let us note
some features of the presented curves. The time depen-
dences of Et prove to be nearexponential. This can be eas-
ily realized on the basis of the approximation (27) within
which ϕ(E) ∝ E−1 and Et is:

Et = E0 exp(−t/τE), (51)

τE = (ρHeχ)−1, (52)

χ = 16.96π(βm)1/2M−1. (53)

However, as the cross-section σd found with (27) is greater
than that obtained by the numerical calculation (Fig. 8),
the formula (51) predicts a faster moderation. Concerning
the electron transfer probability Pe, it increases first with
t and then tends to a saturation. Such a behaviour can be
explained in the following way. The slope dPe/dt is seen
from (50) to be equal to the product λA(Et)P2s(t). Both
the multipliers decrease with t and the slope decreases
also. Physically this means that the electron transfer oc-
curs mostly at an initial stage of the moderation when
P2s is not yet too small and E is still sufficiently high
for λA(E) to be an appreciable part of the total quench-
ing rate λ(E). The latter circumstance leads also to the
saturation becoming more and more distinct as E0 is in-
creased. One may construct a simple model clarifying the
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Fig. 9. The probabilities of the two-photon transition P2γ and
the electron transfer Pe (left ordinates) as well as the µ-atom
energy Et (right ordinates) versus the time t at the helium
pressure PHe = 50 Torr.

time dependence of Pe. It is based on the approximation
(27) and on the assumption that the reaction cross-section
σA is an energy-independent constant. The latter is rea-
sonable at E ≥ 3.5 (T ≥ 1 in Fig. 8). In this case the
integral involved in (49) is easily taken and P2s is:

P2s(t) = exp(−λ2γt) exp[−α(E
1/2
0 −E1/2

t )], (54)

α = σA(8/mµB)1/2χ−1. (55)

Et is given by (51). Pe can be expressed in a simple form
at

t� λ2γ
−1 ≈ 32 ns, (56)

when the first exponent in (54) may be replaced by unity.
We have from (50):

Pe(t) = 1− exp[−α(E
1/2
0 −E1/2

t ], (57)

If, in addition to (56), t obeys the inequality

τE � t, (58)

Et becomes much less than E0 and both P2s and Pe take
constant values:

P2s = exp(−αE1/2
0 ), (59)

Fig. 10. The probabilities P2γ and Pe as well as the energy
Et versus the time t at the helium pressure PHe = 1 Torr.
The notation is similar to that of Figure 9. The Pe curve for
E0 = 1 is not given because it is very near the horizontal axis.
The dotted curve shows the time dependence of P2γ for an
isolated [µB(2s)]4+.

Pe = 1− exp(−αE1/2
0 ). (60)

This clearly indicates the saturation of Pe. The obtained
formulae are applicable at pressures sufficiently high for
the inequalities (56) and (58) to be compatible. In par-
ticular, such a situation is shown in Figure 9 where τE
is about 0.6 ns. In this case the expression (60) accounts
qualitatively for some features of the “exact” Pe curves.
For instance, in accordance with (52) a typical duration
of the presaturation stage varies inversely with PHe and
depends weakly on E0. The saturation value is much more
sensitive to E0 than to PHe in agreement with (60). The
expressions (59) and (60) are valid to the zeroth order in
the small parameter

λ2γτE � 1. (61)

Their sum being equal to unity means that the two-photon
transition probability P2γ vanishes in this order. Indeed,
from (33) it is clear that P2γ is linear in the parame-
ter (61). As a result, during the presaturation stage P2γ

proves to be appreciably less than Pe. This inequality is
emphasized as PHe and E0 are increased (Fig. 9). The
two-photon transition occurs mostly after the saturation
has come. At this stage the electron transfer is already in-
significant (λA � λ2γ) and the remaining [µB(2s)]4+ are
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quenched by the exponential decay law with the constant
λ2γ . In particular, within the above-presented simplified
model the yields Y2γ and Ye are obviously equal to (59)
and (60) respectively. As the pressure is decreased, the
product (λ2γτE) becomes comparable with unity. Such a
case is shown in Figure 10. The electron transfer and the
two-photon transition are not separated in time and oc-
cur in parallel. For this reason at a fixed E0 the saturation
value of Pe decreases compared to the case (61) and Y2γ

increases. It is of interest to compare quantitative predic-
tions of the time dependence of Pe obtainable from (57)
with those based on the numerical calculation. The param-
eter σA involved in (55) is found by equating the “exact”
saturation value to (60). To avoid an excess of Figures we
do not present curves obtained in this way. Actually they
are consistently lower than the “exact” curves. This is due
to a faster moderation predicted by (51). In particular, σA
proves to be several times less than values expected on the
basis of the σA(T ) curve shown in Figure 8.

It was already mentioned that the results (47-50) were
inapplicable at the final moderation stage when the energy
distribution of µ-atoms becomes close to the Maxwellian
one. To take into account contributions of this stage to Y2γ

and Ye we make use of the fact that at T ≤ 10−2(E ≤ 3.5×
10−2) the nonresonance part of the cross-section σA(T )
varies approximately in inverse proportion to the relative
velocity v:

σA(T ) = κv−1, (62)

κ ≈ 5.5× 10−13 cm3 s−1 2. Let us rewrite (31) in a more
general form:

dPe/dt = ρHeξ(t)P2s(t), (63)

ξ(t) = 〈vσA(T )〉P−1
2s (t). (64)

The brackets in (64) mean averaging over the function
f(E, t) and, in addition to (31), over the Maxwellian dis-
tribution of helium atoms. The presence of P2s in such an
artificial form is connected with the normalization (28).
It allows ξ(t) to be treated as a reaction rate constant.
At the final stage of the moderation the function f(E, t)
is nonvanishing at energies for which the approximation
(62) is valid. In this case ξ(t) is:

ξ(t) = κ+ ξp(t). (65)

The first term results from (62), the second term is con-
tributed by the peaks existing in σA(T ) at thermal ener-
gies (Fig. 8). The ratio of these terms may be estimated
in the following way:

ξp(t)/κ ∼ 102 × 10−4 = 10−2 � 1. (66)

The first multiplier 102 is a typical factor by which peak
values of σA exceed nonpeak ones, the second multiplier

2 κ may be increased by a factor of 1.5−2 because of un-
certainties of the calculation of the Auger decay rate W (r) at
large r [19].

10−4 is a typical ratio of a peak width to the temperature.
Thus, because of the narrowness of the peaks their con-
tribution to (65) proves to be negligible and the reaction
rate constant may be considered to be time-independent:
ξ(t) = κ. Then a simple differential equation for P2s(t) is
obtained from (30), (40), and (63). Its solution is:

P2s(t) = P2s(t0) exp[−λ0(t− t0)]. (67)

λ0 = λ2γ + ρHeκ. (68)

t0 is a moment after which the approximation (62) may
be used. We assume that the “continuous loss approx-
imation” is valid right up to this moment and deter-
mine it with the formula (48) in which the lower limit
Et = 3.5× 10−2 (this energy exceeds typical thermal val-
ues by a factor of 20−30). P2s(t0) is found with (49). The
substitution of (67) in (30) and (63) yields for t ≥ t0:

P2γ(t) = (λ2γ/λ0)P2s(t0){1− exp[−λ0(t− t0)]}, (69)

Pe(t) = (ρHeκ/λ0)P2s(t0){1− exp[−λ0(t− t0)]}. (70)

In the limit t→∞ these formulae yield the contributions
of the final moderation stage to Y2γ and Ye. Finally we
have:

Y2γ = P2γ(t0) + (λ2γ/λ0)P2s(t0), (71)

Ye = Pe(t0) + (ρHeκ/λ0)P2s(t0). (72)

The terms P2γ(t0) and Pe(t0) are the contributions of the
interval 0 ≤ t ≤ t0. They are found within the “continuous
loss approximation” with the formulae (33) and (49-50).
It is clear that Y2γ and Ye given by (71-72) obey (41).

Plots of (Y2γ)−1 vs. the helium pressure made for sev-
eral E0 are shown in Figure 11. The use of (Y2γ)−1 is
convenient because in this case the dependence (1) with
ρB2H6 = 0 is represented by a straight line:

(Y2γ)−1 = 1 + ρHe(qHe/λ2γ). (73)

The plots of Figure 11 are seen to look more compli-
cated. They become straight-line provided PHe exceeds
some value increasing with E0. For such pressures we have:

(Y2γ)−1 = C(1 + ρHeD). (74)

The plot of C vs. E0 is also shown in Figure 11. Unlike
(73), C proves to be greater than unity and increases fast
with E0. This can be realized on the basis of the consid-
eration undertaken in connection with (51-61). As PHe is
increased, the following inequalities become valid:

λ2γt0 � 1, (75)

P2γ(t0)� P2s(t0). (76)

Under the condition (75) the moderation to near-thermal
energies is very fast so that the electron transfer and
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Fig. 11. The inverse two-photon transition yield (Y2γ)−1 ver-
sus the helium pressure PHe and the factor C versus the initial
energy of muonic boron E0 (upper abscissae).

the two-photon transition are separated in time. The for-
mer occurs mostly during the moderation while the latter
is responsible for the decay of [µB(2s)]4+ remaining un-
quenched by the moderation’s end. Accordingly, the first
term in (71) may be neglected and (Y2γ)−1 takes the form

(Y2γ)−1 = [P2s(t0)]−1[1 + ρHe(κ/λ2γ)]. (77)

The comparison with (74) yields:

C = [P2s(t0)]−1, (78)

D = κ/λ2γ . (79)

In the limit (75), P2s(t0) depends solely on E0 and de-
creases with it (see Eq. (59)). Accordingly, C increases
near-exponentially.

The previous consideration clearly indicates the infor-
mation which may be extracted from measurements of
Y2γ . Let us assume that the dependence of (Y2γ)−1 on
PHe has been found in an experiment performed under the
condition (5), and that it shows the straight-line branch.
Its fit yields the factors C and D. The plot of C vs. E0

shown in Figure 11 allows a typical value of E0 to be
estimated. In particular, an appreciable deviation of C
from unity may be an indicator of an additional accelera-
tion of muonic boron during its formation in the diborane

molecule (caused, for instance, by its Coulomb repulsion
from positively charged molecular fragments). Moreover,
in this case it is possible to estimate the probability P2s(t0)
of the unquenching of [µB(2s)]4+ during its moderation to
near-thermal energies as well as the probability Pe(t0) of
the electron transfer at this stage. The former is obtained
from (78), the latter-from the equality

P2s(t0) + Pe(t0) = 1, (80)

which is valid at sufficiently large E0 in the limit (75).
Concerning the factor D, it allows the rate constant κ of
the electron transfer at low energies to be determined. In
particular, if C is close to unity, the form (74) is identi-
cal to (73) which is the extrapolation of (1) to vanishing
ρB2H6 . In this case qHe coincides with κ. The theoretical
value of κ presented in (62) is seen to lie within the ex-
perimental interval (2).

The results obtained in this section relate to an ide-
alized case in which the partial pressure of diborane is
so small that its contribution to the electron transfer is
negligible. The lowest diborane pressure achieved in the
experiment [18] is not yet sufficient for such a situation to
occur. In this case the electron transfer is still due to col-
lisions of muonic boron with diborane molecules. As the
corresponding cross-section is now unknown, any quanti-
tative predictions are impossible. However, some remarks
of a qualitative kind can be made based on the results of
the present work. For instance, by analogy to (74) it is
possible to suggest the following formula to fit the data
of [18]:

(Y2γ)−1 = C′[1 + ρHe(qHe/λ2γ) + ρB2H6(qB2H6/λ2γ)].
(81)

It differs from (1) by one additional fitted parameter C′

similar to C in (74). That C was found to be unequal to
unity is due to the v−1 law (62) for the reaction cross-
section σA being valid only within a limited interval of
collision energies. Otherwise the rate λA (32) is energy-
independent, the time dependence of P2s following from
(49) is exponential at any form of the function ϕ(E), and
the factor C is obtained to be exactly equal to unity. Ac-
tually, deviations of σA from the v−1 law grow fast at
T ≥ 10−2. For this reason the second multiplier in (49)
responsible for a nonexponential decay of the 2s state in-
creases with E0, and C increases too. In the case of the
experiment [18], σA is replaced by the total cross-section
σt of the electron transfer from diborane to muonic boron
(this transfer is assumed to be the main inelastic chan-
nel). If within an interval of relevant collision energies the
energy dependence of σt deviates considerably from the
v−1 law, the factor C′ may be expected to differ appre-
ciably from unity. Dr. K. Kirch kindly agreed to make a
fit of the experimental data with the help of (81). Unfor-
tunately, because of a low statistical accuracy of the data
a reliable fixation of C′ proved to be impossible.

Finally let us consider why the v−1 law may be valid
for σt and how deviations from it may be interpreted. If
the conception of a complex central potential is assumed
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to be applicable to describe collisions of muonic boron
with diborane molecules, σt may be written in the form
similar to (15):

σt = (π/k2)
∞∑
l=0

(2l + 1)Xl. (82)

Xl is the total probability of the electron transfer at the
given T and l. It is natural to assume that σt is mainly
contributed by near-central collisions for which l is less
than some lm � 1. Taking Xl to be a slowly varying
function of l at l ≤ lm we obtain:

σt ≈ (π/k2)Xl=0l
2
m. (83)

It is natural to determine lm from the condition

T ≥ Uh. (84)

Uh is the height of a hump in the effective potential. If the
form (8) is taken for the potential, Uh and the hump top
radius rh are:

Uh = [l(l + 1)]2/128β′m′2, (85)

rh = [32β′m′/l(l+ 1)]1/2. (86)

β′ = 160.1 is the polarizability of the diborane
molecule [29], m′ is the reduced mass of this molecule and
µB4+. It follows from (83-85):

l2m ≈ m
′(128β′T )1/2, (87)

σt ≈ 8πXl=0v
−1(β′/m′)1/2. (88)

These formulae are valid only in a limited energy interval.
Indeed, the effective potential has a hump provided

rh ≥ r0. (89)

r0 is a radius at which the long-range attraction (8) dis-
appears. It seems to be of the order of a molecule’s size.
It is clear from (86) that this inequality becomes invalid
as l is increased. The requirement of its validity at l = lm
limits the relative velocity:

v ≤ 4r−2
0 (β′/m′)1/2. (90)

We see from (88) that if the v-dependence of Xl=0 is weak
in the interval (90), σt proves to be proportional to v−1.
In particular, such a situation takes place for the cross-
section σA at T ≤ 10−2. Within the present approach
deviations of σt from the v−1 law result clearly from ei-
ther apprecible variations of Xl=0 with v or a violation of
the inequality (90). Because of the large diborane polariz-
ability the latter may be expected if the energy of muonic
boron E becomes of the order of 0.1.
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